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Objectives: Efforts to prevent Alzheimer’s disease (AD) would benefit from

identifying cognitively unimpaired (CU) individuals who are liable to progress

to cognitive impairment. Therefore, we aimed to develop a model to predict

cognitive decline among CU individuals in two independent cohorts.

Methods: A total of 407 CU individuals from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) and 285 CU individuals from the Samsung Medical

Center (SMC) were recruited in this study. We assessed cognitive outcomes by

using neuropsychological composite scores in the ADNI and SMC cohorts. We

performed latent growth mixture modeling and developed the predictive model.

Results: Growth mixture modeling identified 13.8 and 13.0% of CU individuals

in the ADNI and SMC cohorts, respectively, as the “declining group.” In the

ADNI cohort, multivariable logistic regression modeling showed that increased

amyloid-β (Aβ) uptake (β [SE]: 4.852 [0.862], p < 0.001), low baseline cognitive

composite scores (β [SE]: −0.274 [0.070], p < 0.001), and reduced hippocampal

volume (β [SE]: −0.952 [0.302], p = 0.002) were predictive of cognitive decline.

In the SMC cohort, increased Aβ uptake (β [SE]: 2.007 [0.549], p < 0.001) and low

baseline cognitive composite scores (β [SE]: −4.464 [0.758], p < 0.001) predicted

cognitive decline. Finally, predictive models of cognitive decline showed good

to excellent discrimination and calibration capabilities (C-statistic = 0.85 for the

ADNI model and 0.94 for the SMC model).

Conclusion: Our study provides novel insights into the cognitive trajectories of

CU individuals. Furthermore, the predictive model can facilitate the classification

of CU individuals in future primary prevention trials.
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Introduction

Populations around the world are aging more rapidly, and
aging-related health issues and diseases are projected to lead
to greater societal and economic burdens (Patterson, 2018). As
individuals age, they may experience progressive physiological
(“normal”) cognitive decline, although each follows a unique
trajectory (Deary et al., 2009). In particular, reductions in memory,
conceptual reasoning, and processing speed are frequently
observed in aged individuals (Committee on the Public Health
Dimensions of Cognitive Aging et al., 2015). Pathological cognitive
decline may occur due to Alzheimer’s disease (AD)-related
processes, eventually resulting in mild cognitive impairment (MCI)
due to AD or AD dementia (Mormino and Papp, 2018). The WHO
reported in 2012 that about 150 million people will be impacted
by dementia by 2050, with a consequent increase in the total
costs of AD to over $1 trillion (Patterson, 2018). Therefore, early
diagnosis and prevention are critical to reduce the burdens of
AD. In particular, AD prevention may be improved by identifying
cognitively unimpaired (CU) individuals who are liable to progress
to cognitive impairment (Jack et al., 2018).

Previous studies of early AD diagnosis were based on
hypothesis-driven analyses, in which researchers classified
individuals into subgroups based on their hypothesis. In contrast,
in trajectory analyses, individuals are classified into distinct
subgroups or classes using a data-driven classification method
(Nguena Nguefack et al., 2020). Trajectory analyses enable
researchers to better characterize and understand intra- and
inter-individual variability as well as to investigate the patterns
of health outcomes in longitudinal data (Jung and Wickrama,
2008). In this regard, mixture modeling approaches, such as
growth mixture modeling (GMM) and latent class growth analysis
(LCGA), have been increasingly used to identify homogeneous
subpopulations within a larger heterogeneous population and
to identify meaningful classes (Jung and Wickrama, 2008).
Group-based models have been applied to patients with cognitive
impairments in order to identify developmental trajectories (David
et al., 2016; Lee et al., 2018; Kim S. J. et al., 2022). However, there
have been only a few studies applying trajectory analyses to CU
individuals (Small and Bäckman, 2007; Min, 2018).

Previously, several factors have been found to influence the
progression of CU to MCI or dementia (Rusinek et al., 2003;
Chen et al., 2017; Mormino and Papp, 2018; Cho H. et al.,
2020). Specifically, advanced age, reductions in baseline executive
function, and smaller total brain volume were independently
associated with the risk of conversion to MCI (Chen et al., 2017). In
addition, CU individuals with the apolipoprotein E ε4 allele (APOE
ε4), cerebral amyloid burdens, and cortical atrophy were more
likely to progress to cognitive impairment (Rusinek et al., 2003;
Mormino and Papp, 2018; Cho H. et al., 2020). While these study
results are important, methods to translate such findings to clinical
practice are needed in order to enable individualized prediction of
cognitive decline.

As a prediction model for personalized application, the
nomogram is a valuable tool. A nomogram is a chart describing
the numerical relationships between diseases and risk factors and
their graphical calculation (Kattan and Marasco, 2010). Based on
the specific characteristics of patients or diseases, it is designed
to help doctors and patients for risk assessment and predicting

results of treatment (Tsikitis et al., 2016). Also, with its advantages
of visual presentation and easy accessibility, nomogram can be
easily used in busy clinical environments (Kim W. et al., 2016).
Nomograms have been applied for more than a decade in oncology
or cardiology. Nomograms are being developed and used more
frequently in patients with cognitive deficits (Jang et al., 2017; Kim
et al., 2018), but their development and application are lacking for
CU individuals.

In the present study, we aimed to investigate the feasibilities
of classification of cognitive trajectories of CU individuals in
two independent cohorts with different genetic and sociocultural
backgrounds. First, we determined if there were distinct growth
patterns in the cognitive trajectories of the CU individuals by
using mixture modeling in two independent cohorts. Second, we
evaluated the features that significantly impact the classification of
latent class. We hypothesized that there might be differences in the
effects of features on the classification between the two datasets
because participants of the two datasets have different genetic
and sociocultural backgrounds. Finally, using these features,
we developed a predictive model for cognitive decline in CU
individuals and a nomogram to visualize risk probability.

Materials and methods

Clinical data collection

We collected the data from two independent cohorts. Data used
for the preparation of the current study were obtained from the
ADNIMERGE dataset of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu) (n = 407) and from
the Samsung Medical Center (SMC) (n = 285).

The ADNI was launched in 2003 as a public-private
partnership, led by principal investigator Michael W. Weiner,
MD. The primary purpose of the ADNI is to test whether serial
magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical or neuropsychological
assessments, can be combined to evaluate the progression of MCI
and early AD. For up-to-date information, see www.adni-info.org.
Participants from the ADNI-1 to ADNI-3 and ADNI GO were
included in the current study if (1) their baseline diagnosis was
CU or subjective memory complaints, (2) they had valid cognitive
assessments, and (3) they had at least two follow-up assessments of
cognitive function. The baseline diagnoses were determined using
the standard criteria described in the ADNI procedure manuals.1

As a result, a total of 407 individuals met these qualifications
to be included in the current study. All individuals had usable
neuropsychological data, and 352 individuals had hippocampal
volumetric data.

In addition, 285 CU individuals were recruited from the SMC.
These patients also had usable neuropsychological data, and 231
individuals had hippocampal volumetric data. They underwent
amyloid PET scans at the SMC between September 2015 and
December 2021, and were followed up at least twice through clinical
interviews and thorough cognitive tests until December 2021. The
following were used to establish the baseline diagnostic criteria for

1 www.adni-info.org

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1122927
https://adni.loni.usc.edu
http://www.adni-info.org
http://www.adni-info.org
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1122927 March 7, 2023 Time: 13:31 # 3

Kim et al. 10.3389/fnagi.2023.1122927

CU: (i) the Korean Mini-Mental State Examination (K-MMSE)
≥24 or above −1.5 SD from the age-, gender-, and education-
adjusted norms if education level was <9 years; (ii) above −1
SD from the age-, gender-, and education-adjusted norms on the
delayed recall of the Seoul Verbal Learning Test-Individuals version
(SVLT-E); (iii) above−2 SD from the age-, gender-, and education-
adjusted norms on the Korean version of the Boston Naming Test
(K-BNT), the Rey-Osterrieth Complex Figure Test (RCFT) copy,
and the Korean Color Word Stroop Test (K-CWST) color reading;
and (iv) absence of other neurological diseases.

Standard protocol approval, registration,
and patient consent

The authors obtained approval from the ADNI Data Sharing
and Publications Committee for data use and publication. No
Institutional Review Board (IRB) review approval was required
to use de-identified ADNI data that is available for download.
All methods were carried out in accordance with the approved
guidelines. At the SMC, the IRB approved the use of SMC data
for this study, and all of the methods used were carried out in
compliance with the approved standards.

Acquisition of neuroimaging data

The current study employed the following neuroimaging
data from the ADNIMERGE dataset: average AV45 standardized
uptake value ratios (SUVRs) of the frontal cortex, parietal cortex,
anterior cingulate cortex and precuneus relative to the cerebellum,
and the hippocampal volume (HV). The detailed protocols for
image acquisition have been described in previous studies (Jagust
et al., 2010) and the ADNI database.2 Cortical reconstruction
and volumetric segmentation were performed using the FreeSurfer
image analysis program (Hartig et al., 2014).3

For SMC data, all individuals underwent either FBB or FMM
PET scans at the SMC using a Discovery STe PET/CT scanner (GE
Medical Systems, Milwaukee, WI, USA) in 3D scanning mode to
examine 47 slices of 3.3-mm thickness spanning the entire brain
(Kim et al., 2018; Jang et al., 2019). In our previous study, we used
a direct comparison Centiloid units (dcCL) conversion equation
to directly convert the SUVR values of the FBB or FMM cortical
target volume of interest (CTX VOI) into dcCL units (Klunk et al.,
2015; Cho S. H. et al., 2020). The conversion was performed using
equations for the FBB (dcCLFBB = 151.42× dcSUVRFBB − 142.24);
and the FMM (dcCLFMM = 148.52 × dcSUVRFMM − 137.09)
PET. All individuals also underwent 3D T1-weighted turbo field
echo MRI at SMC using a 3.0-T MRI scanner (Philips 3.0T
Achieva; Philips Healthcare, Andover, MA, USA) as previously
described (Kim H. J. et al., 2016). Images were processed using
the CIVET anatomical image-processing pipeline (version 2.1.0)
(Zijdenbos et al., 2002). We calculated the intracranial volume
(ICV) by measuring the total volume of the voxels within the
brain mask (Smith, 2002). The FMRIB (Functional Magnetic

2 adni.loni.usc.edu

3 http://surfer.nmr.mgh.harvard.edu/

Resonance Imaging of the Brain) Software Library (FSL) method
was used to create brain masks. Since cortical surface models were
extracted from brain MRI volumes transformed into stereotaxic
space, cortical thickness was assessed in the native space by applying
an inverse transformation matrix to the cortical surfaces and
rebuilding them in native space (Im et al., 2006). To measure
HV, we employed a computerized hippocampus segmentation
technique that combined graph-cut optimization, atlas-based
segmentation, and morphological opening (Kwak et al., 2013).

Neuropsychological assessments

The current study used the ADNI-modified Preclinical
Alzheimer Cognitive Composite with the Trail-Making Test, Part
B time to completion (mPACCtrt) as the cognitive endpoint from
the original ADNIMERGE dataset. The PACC was developed as an
outcome measure of cognitive changes in preclinical AD (Donohue
et al., 2014). The original version includes (a) the total recall score
of the Free and Cued Selective Reminding Test (FCSRT), (b) the
delayed recall score of the Logical Memory IIa (LM), (c) the Digit
Symbol Substitution score from the Wechsler Adult Intelligence
Scale revised version (DSST), (d) Mini-Mental State Examination
(MMSE) total score. Because the FCSRT was not included in the
ADNI battery, the FCSRT was replaced by the delayed recall of the
Alzheimer’s Disease Assessment Scale (ADAS) in the mPACCtrt.
Also, we used the Trail-Making Test, Part B (TMT-B) instead of the
DSST (Donohue et al., 2014). As a result, the mPACCtrt consisted
of (a) ADAS-cognitive subscale delayed word recall, (b) logical
memory delayed recall, (c) the MMSE total score, and (d) (log-
transformed) trail-making test time to completion. The composite
score was the sum of the z-scores of each constituent test, which
were based upon the mean and standard deviations of the baseline
scores of the CU individuals in the ADNI (Donohue et al., 2014,
2017).

For the SMC dataset, the Longitudinal Amyloid Cognitive
Composite in Preclinical AD (LACPA) was used. The LACPA
was developed for longitudinal tracking of amyloid-β (Aβ)-related
cognitive decline in CU individuals using well-characterized and
relatively large Korean CU cohorts (Kim Y. J. et al., 2022). The
LACPA equation is as follows:

LACPA = SVLT IR Z + SVLT DR Z + SVLT recognition Z

+ K− TMT− B time Z + K−MMSE Z/Number of tests

where IR is the immediate recall, DR is the delayed recall, K-TMT-B
is the Korean Trail-Making Test Part B and Z is the z-score.

Statistical analyses

We used mixture modeling to test for distinct growth patterns
in the cognitive trajectories of the CU individuals. Mixture
modeling generally uses categorical latent variables representing
the composition of a subpopulation, in which case the members
of the subpopulation are unknown and inferred from the data
(Wang and Bodner, 2007). In mixture modeling using longitudinal
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data, unperceived heterogeneity is captured through categorical
and continuous latent variables (Wang and Bodner, 2007). We used
mixture modeling with GMM and the LCGA for the ADNI dataset
and SMC datasets, respectively. The LCGA is a special type of
GMM that limits the variance and covariance estimates for growth
factors within each class to zero (Jung and Wickrama, 2008). To
determine the adequate number of latent classes, we compared
the following four methods: Bayesian information criterion (BIC)
(Schwarz, 1978); Akaike information criterion (AIC) (Akaike,
1974); Lo, Mendell, Rubin test (LMR) (Lo et al., 2001); and
parametric bootstrapped likelihood ratio test (BLRT) (McLachlan
and Peel, 2000). After determining the number of latent classes, the
baseline characteristics of the latent classes were analyzed using the
independent t-test and the Chi-square test.

To investigate the effects of variables on the cognitive trajectory
group based on the mPACCtrt score derived from the ADNI
dataset, we performed multivariable logistic regression analyses,
which include AV45 SUVR, baseline mPACCtrt score, and HV
associated with covariates including age, gender, education level,
APOEε4. In addition, to determine the effects of variables on the
cognitive trajectory group based on the LACPA score derived from
the SMC dataset, we conducted multivariable logistic regression
analyses, which include dcCL, baseline LACPA score, and HV
associated with covariates including age, gender, education level,
and APOE ε4 (Figure 1). The HV was used as the value divided
by the ICV (HV/ICV) to consider the cranial cavity. The corrected
HV was multiplied by 1,000, because of the relatively small scale.
The dcCL was used as the value divided by 100.

After developing the predictive models, we constructed a
nomogram using the dataset. We assigned a point value to each
variable using the beta coefficients from the logistic regression
model. Then, the most powerful variable was set at 100 points,
while other variables were assigned between 0 and 100 points
based on their proportions. The total points summed by the scores
corresponding to each variable were immediately converted to risk
probability. Finally, the predictive accuracy of the nomogram was
verified by discrimination (C-index) and calibration.

Mplus version 8.3 was used for the GMM, and the
LCGA (Muthén and Muthén, 2019). Full information maximum
likelihood (FIML) estimation was employed for the missing values
found in the longitudinal data. R 4.0.3 (Vienna, Austria4) was used
for the logistic regression analyses and to develop the nomogram.

Data availability

The datasets used and/or analyzed during the present study are
available from the corresponding authors on reasonable request.

Results

Demographic characteristics

The baseline demographic characteristics of the CU individuals
included in the ADNI and SMC datasets are shown in Table 1. The

4 http://www.R-project.org/

mean age of the individuals was 73.2 years in the ADNI dataset and
70.7 years in the SMC dataset (p < 0.001). The proportion of APOE
ε4 carriers was 30.2 and 29.8% in the ADNI dataset and the SMC
dataset, respectively. The proportion of females was 53.8% in the
ADNI dataset and 61.8% in the SMC dataset (p = 0.038).

Identifying distinguishable trajectory
subgroups

For the ADNI dataset, to explore the number of latent class,
BIC, adjusted BIC and AIC values were compared as we increased
the number of classes to determine the appropriate model. Then,
we compared the models using the LMR and BLRT (Table 2).
Although the three-class model exhibited smaller AIC and adjusted
BIC values, the two-class model had the smallest BIC value.
Moreover, the difference between these values when obtained from
the two- and three-class models was minimal compared to the
difference for the one- and two-class models. This finding indicated
that the two-class model was an appropriate model. To determine
whether the two- or three-class model was better, we also used the
LMR and BLRT. The LMR comparing the two- and three-class
models indicated the two-class model was better (p = 0.014), and
the BLRT result also supported the two-class model (p < 0.001).
Considering these results comprehensively, we decided that the
two-class model would be adequate for the final model. Its entropy
(the quality of the classification) was high at 0.79. For the SMC
dataset, the LMR comparing the one-, two-, and three-class models
indicated that the two-class model was better (p = 0.018), and
the BLRT result also supported the two-class model (p < 0.001).
Considering these results comprehensively, we again decided that
the two-class model would be adequate for the final model. Its
entropy, the quality of the classification, was high at 0.861.

Figure 2 shows the cognitive trajectories of the two-class model
using the PACC and LACPA for the ADNI and SMC datasets,
respectively. In the ADNI dataset, Class 1, in which the estimated
class percentage was 86.2%, was a group whose cognitive function
remained stable for 7 years (intercept = 0.479, SE = 0.148, p = 0.001;
slope = −0.012, SE = 0.027, p = 0.649). Class 2, in which the
estimated class percentage was 13.8%, showed cognitive decline
during the same period (intercept = −1.058, SE = 0.534, p = 0.047;
slope =−1.262, SE = 0.088, p < 0.001). Thus, we identified Class 1 a
“stable group” and Class 2 as a “declining group” (Figure 2A). The
same trajectory subgroups were also identified in CU individuals of
the SMC dataset. Class 1, in which the estimated class percentage
was 87.0%, was a group whose cognitive function remained stable
for 7 years (intercept = 0.257, SE = 0.045, p < 0.001; slope =−0.060,
SE = 0.023, p = 0.008). Class 2, in which the estimated class
percentage was 13.0%, showed cognitive decline during the same
period (intercept = −0.734, SE = 0.180, p < 0.001; slope = −0.424,
SE = 0.075, p < 0.001) (Figure 2B).

Comparisons of the clinical
characteristics of the trajectory
subgroups

The baseline characteristics of the two trajectory groups in the
ADNI dataset (351 stable and 56 decliners), and the SMC dataset
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FIGURE 1

Illustrations of the study models including predictors in the latent growth mixture modeling in (A) ADNI and (B) SMC. ↑AV45 SUVR in ADNI and dcCL
in SMC. ADNI, Alzheimer’s Disease Neuroimaging Initiative; SMC, Samsung Medical Center; mPACCtrt, modified Preclinical Alzheimer’s Cognitive
Composite with Trail-Making Test, Part B; LACPA, Longitudinal Amyloid Cognitive Composite in Preclinical AD; HV, hippocampal volume; NP,
neuropsychological.

TABLE 1 Baseline demographic and neuropsychological characteristics
of the study participants.

Variables ADNI
(n = 407)

SMC
(n = 285)

p-Value

Age, years 73.2± 6.1 70.7± 6.9 <0.001

Education, years 16.6± 2.6 11.7± 4.7 <0.001

Female, N (%) 219 (53.8) 176 (61.8) 0.038

APOEε4 carrier N (%) 123 (30.2) 85 (29.8) 0.913

N, number; ADNI, Alzheimer’s Disease Neuroimaging Initiative; SMC, Samsung Medical
Center; APOEε4, apolipoprotein E ε 4 allele.

(248 stable and 37 decliners) are shown in Table 3. The data
analyses indicated there were significant predictive factors among
the demographic variables and biomarkers at baseline identifying
individuals who were at risk of cognitive decline among the two
cohorts. The mean age was higher in the decliners than in the
stable groups of both datasets (t-test; ADNI p < 0.001; SMC
p = 0.032). The years of education and gender distribution did
not significantly differ between the two groups. The presence of
APOEε4 was more frequent among decliners than in the stable
group (Chi-square test; ADNI p = 0.028; SMC p = 0.021). In a
comparison of biomarkers including Aβ and HV, Aβ uptake was
higher in the decliners than in the stable group (t-test; ADNI
p < 0.001; SMC p < 0.001). In terms of the HV, it was lower

in the decliners than in the stable group in ADNI, whereas there
was no significant difference between the two groups in the SMC
dataset (t-test; ADNI p < 0.001; SMC p = 0.063). The baseline
neuropsychological composite score was lower in the decliners than
in the stable group in both datasets (t-test; ADNI p < 0.001; SMC
p < 0.001).

Development of the predictive model

Multivariable logistic regression was used to analyze the
associations between cognitive decline and potential predictors.
Table 4 shows the significant measures predicting cognitive
decline. In the model using the ADNI dataset, the multivariable
logistic regression model showed that Aβ uptake, baseline
neuropsychological composite score and HV were predictive
of being included in the cognitive decline group. Increased
Aβ uptake (β [SE]: 4.852 [0.862], p < 0.001), lower baseline
neuropsychological composite score (β [SE]: −0.274 [0.070],
p < 0.001), and lower HV (β [SE]: −0.952 [0.302], p = 0.002) were
significantly correlated with greater likelihood of being included in
the cognitive decline group. The predictive performance (C-index)
in the ADNI model was 0.85 (Table 4). In the model using the
SMC dataset increased Aβ uptake (β [SE]: 2.007 [0.549], p = 0.007)
and lower baseline neuropsychological composite scores (β [SE]:
−4.464 [0.758] p < 0.001) were significantly correlated with greater

TABLE 2 Fitting information for the growth mixture models of cognitive trajectories from the ADNI and SMC cohort datasets.

Model selection measures ADNI SMC

One-class Two-class Three-class One-class Two-class Three-class

AIC 8,306.216 8,239.018 8,233.775 2,093.981 1,890.766 1,794.979

BIC 8,358.331 8,303.159 8,309.942 2,130.506 1,938.248 1,853.419

Adjusted BIC 8,317.080 8,252.389 8,249.653 2,098.795 1,897.025 1,802.682

LMR p-value – 0.014 0.449 – 0.018 0.050

BLRT p-value – <0.001 0.066 – <0.001 <0.001

Entropy – 0.790 0.815 – 0.861 0.763

ADNI, Alzheimer’s Disease Neuroimaging Initiative; SMC, Samsung Medical Center; AIC, Akaike information criterion; BIC, Bayesian information criterion; LMR, Lo, Mendell, Rubin test;
BLRT, parametric bootstrapped likelihood ratio test.
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FIGURE 2

The cognitive trajectories of the two-class model. The mPACCtrt (A) and LACPA (B) for the two-class unconditional growth mixture modeling
solution. ADNI, Alzheimer’s Disease Neuroimaging Initiative; SMC, Samsung Medical Center; mPACCtrt, modified Preclinical Alzheimer’s Cognitive
Composite with Trail-Making Test, Part B; LACPA, Longitudinal Amyloid Cognitive Composite in Preclinical AD; N, number; yr, year.

TABLE 3 Baseline demographic and neuropsychological characteristics of the individuals assigned to each latent class.

Variables ADNI SMC

Stable (N = 351) Decliners (N = 56) Stable (N = 248) Decliners (N = 37)

Age, yearsa 72.7 (6.2) 75.7 (5.2)* 70.4 (7.0) 73.0 (6.0)*

Education, yearsa 16.6 (2.6) 16.5 (2.4) 11.6 (4.6) 12.2 (5.0)

Female, N (%) 189 (53.8) 30 (53.6) 152 (61.3) 24 (64.9)

APOEε4 carrier N (%) 99 (28.3) 24 (42.9)* 68 (28.2) 17 (47.2)*

Aβ uptakea↑ 1.1 (0.2) 1.3 (0.2)** 24.9 (39.0) 57.5 (48.7)**

HV/ICVa 5.0× 10−3 (6.3× 10−4) 4.6× 10−3 (6.7× 10−4)∗∗ 2.3× 10−3 (3.2× 10−4) 2.2× 10−3 (2.9× 10−4)

Baseline neuropsychological composite
scorea↑↑

0.36 (2.45) −1.84 (2.81)** 0.25 (0.52) −0.75 (0.62)**

*p < 0.05; **p < 0.001.
aValues are the mean and SD. ↑AV45 SUVR in ADNI and dcCL in SMC. ↑↑Modified Preclinical Alzheimer’s Cognitive Composite with Trail-Making Test, Part B in the ADNI cohort,
Longitudinal Amyloid Cognitive Composite in Preclinical AD in the SMC cohort. ADNI, Alzheimer’s Disease Neuroimaging Initiative; SMC, Samsung Medical Center; APOEε4, apolipoprotein
E ε4 allele; Aβ, amyloid-β; SUVR, standardized uptake value ratio; dcCL, direct comparison Centiloid units; HV, hippocampal volume; ICV: intracranial volume.

risk probability. The C-index in the SMC model was 0.94. In
addition, gender (β [SE]: 0.517 [0.386], p = 0.180) in ADNI data,
age (β [SE]: 0.081 [0.039], p = 0.038) and gender (β [SE]: 1.093
[0.532], p = 0.040) in SMC data were also statistically significant
variables when the p-value is based on 0.2, although the statistical
significance is lower than other variables (Table 4).

We then constructed nomograms based on the multivariable
logistic regression results (Figure 3). The total points were
calculated from the sum of each point, and the risk probability
was calculated from the total points. The probability in our
nomograms referred to risk probability of being assigned to
a cognitive decline group. The bias-corrected calibrated values

were generated from validations based on 1,000 bootstrap
resamples. The non-parametric calibration curves revealed that the
bias-corrected calibration plots were close to the 45◦ line, indicating
the nomograms are well calibrated (Supplementary Figure 1).

Visualization of the predictive model

Finally, we visualized the risk score of each predictor and the
predicted probability of belonging to a trajectory group using the
predictive model (Figure 4). Specifically, for a woman with an
AV45 SUVR of 1.5, HV/ICV of 0.004 and an mPACCtrt of −2, the
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TABLE 4 Multivariable logistic regression for the predictive model.

Predictors B SE OR 95% CI p C-index

ADNI Intercept −3.311 1.724 0.036 − 0.055 0.854

Female 0.517 0.386 1.678 0.788, 3.574 0.180

Aβ uptake↑ 4.852 0.862 128.013 23.628, 693.563 <0.001

HV/ICV −0.952 0.302 0.386 0.214, 0.697 0.002

Baseline neuropsychological composite score↑↑ −0.274 0.070 0.760 0.663, 0.872 <0.001

SMC Intercept −10.281 3.017 3.4× 10−5
− 0.001 0.941

Age 0.081 0.039 1.084 1.004, 1.171 0.038

Female 1.093 0.532 2.983 1.052, 8.464 0.040

Aβ uptake (CL)↑ 2.007 0.549 7.438 2.536, 21.817 <0.001

Baseline neuropsychological composite score↑↑ −4.464 0.758 0.012 0.003, 0.051 <0.001

↑AV45 SUVR in ADNI and dcCL in SMC. ↑↑Modified Preclinical Alzheimer’s Cognitive Composite with Trail-Making Test, Part B in ADNI cohort, Longitudinal Amyloid Cognitive Composite
in Preclinical AD in SMC cohort. ADNI, Alzheimer’s Disease Neuroimaging Initiative; SMC, Samsung Medical Center; Aβ, amyloid-β; SUVR, standardized uptake value ratio; dcCL, direct
comparison Centiloid units; HV, hippocampal volume; ICV, intracranial volume; SE, standard error; OR, odds ratio; 95% CI, 95% confidence interval.

FIGURE 3

Nomograms predicting the cognitive decline of the cognitively unimpaired individuals in (A) ADNI and (B) SMC. Age (only in SMC), gender, amyloid
uptake, hippocampal volume (only in ADNI), and baseline neuropsychological composite score are variables that significantly and independently
affected the cognitive trajectory of the cognitively unimpaired individuals. Using odd ratios from the regression model, each variable was assigned
points. The total points from all variables indicated the probability of the declining group in the nomogram. ADNI, Alzheimer’s Disease Neuroimaging
Initiative; SMC, Samsung Medical Center; SUVR: standardized uptake value ratio; dcCL: direct comparison Centiloid units; HV, hippocampal volume;
ICV, intracranial volume; mPACCtrt, modified Preclinical Alzheimer’s Cognitive Composite with Trail-Making Test, Part B; LACPA, Longitudinal
Amyloid Cognitive Composite in Preclinical AD.

risk scores of all predictors are 142, so the probability of belonging
to the declining group was estimated to be 77.2%.

Discussion

In the present study, we explored the cognitive trajectories of
CU individuals in two independent cohorts identified from the
ADNI and SMC datasets. Our major findings were as follows. First,
13.8% of the CU individuals in the ADNI dataset were classified
in the declining group, which was similar to the proportion of the
decliners in the SMC dataset. Second, increased amyloid uptake,
lower baseline neuropsychological composite score, and decreased
HV (only in ADNI) were predictive of being classified within the
declining group. Finally, predictive models of cognitive decline
showed fair to good discrimination and calibration capabilities.
Taken together, our analysis provided novel insights into the
different cognitive trajectories of CU individuals. Furthermore, the
predictive model may facilitate the classification of CU individuals,
and could be employed in future primary prevention trials.

Our first major finding was that 13.8% of the CU individuals
in the ADNI dataset were classified to the declining group, similar
to the results for the SMC dataset. Regarding the conversion
from CU to MCI, a previous study revealed that clinic-based
sample populations demonstrated an annual conversion rate of
30% (95% CI 17–54%) per person-year, and the community-
based sample population demonstrated a conversion rate of 5%
(95% CI 3–6%) per person-year (Chen et al., 2017). In another
study, 6.7% of CU individuals converted to MCI within a mean
of 13.1 months (Fernandez-Blazquez et al., 2016). While previous
studies used the binary classification of conversion of CU to MCI,
our study employed a data-driven classification to the CU based
on longitudinal cognitive performance rather than on a priori
classifications. A previous study using the mixture modeling
showed that 6.7% of CU were classified into the declining group
(Min, 2018). This discrepancy might be explained by the differences
in neuropsychological test measurements between the previous
study and our study. Previous studies used the MMSE (Small
and Bäckman, 2007; Min, 2018), and this measure may not be
sensitive enough to detect subtle cognitive changes in CU. However,
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FIGURE 4

Example of the graphical representation of the model predictors. The subject was a woman with an AV45 SUVR of 1.5, HV/ICV of 0.004, and an
mPACCtrt of –2. As a result, her total score was 142 and the model predicted her corresponding probability of cognitive decline would be 77.2%.
SUVR, standardized uptake value ratio; HV, hippocampal volume; ICV, intracranial volume; mPACCtrt, modified Preclinical Alzheimer’s Cognitive
Composite with Trail-Making Test, Part B.

our study used cognitive composites that are sensitive enough to
detect subtle cognitive changes in CU, such as the PACC for the
ADNI dataset and the LACPA for the SMC dataset. These two
composite scores assess episodic memory, executive function, and
global cognition (Donohue et al., 2014; Kim Y. J. et al., 2022)
and have been frequently used to track cognitive changes in CU
individuals (Donohue et al., 2014; Kim Y. J. et al., 2022).

Our second major finding was that increased Aβ uptake,
decreased neuropsychological composite scores and decreased HV
(only in ADNI) in individuals were predictive of being assigned to
the declining group. Our findings are consistent with converging
evidence. Specifically, a previous study suggested that cognitive
performance, APOE ε4, decreased hippocampal and entorhinal
cortex volumes, and increased cerebrospinal fluid p-tau were the
most feasible predictors of CU to MCI conversion within 5 years
(Albert et al., 2018). Therefore, the detection of these predictors
in CU individuals has provided an important opportunity to
understanding the contributions of these predictors to cognitive
decline (Mormino and Papp, 2018).

Notably, there were some differences between the ADNI and
SMC datasets with respect to the relative effects of each predictor.
Specifically, relative to the ADNI dataset, the SMC dataset showed
greater relative effects of females on the faster decliner. Previous
studies indicated that females showed faster cognitive decline than
males. Considering that the ADNI and SMC datasets include
mainly non-Hispanic Whites (NHW) and Koreans, respectively, it
might be related to the interactive effects of ethnicity and gender
on cognitive decline. Although the underlying mechanisms are not
fully understood, these gender- and ethnicity-specific differences
might be related to genetic and sociocultural differences between
Korean and NHW participants. In fact, a previous study from our
group suggested that females suffered more deleterious effects of

cardiometabolic syndrome on brain aging than males, which is
more pronounced in Koreans than in UKs (Kang et al., 2022).
Also, relative to the ADNI dataset, the SMC dataset showed greater
relative effects of decreased neuropsychological composite scores
than increased Aβ uptake and decreased HV. Further studies
are needed to determine whether ethnicity influences Alzheimer’s
pathology and progression.

Our final major finding was that predictive models of cognitive
decline in CU individuals revealed fair to good discrimination
and calibration capabilities. Previously, there were few predictive
models for CU to MCI conversion. Nevertheless, previous studies
have shown that the conversion of CU to MCI is influenced by fixed
time and cognitive impairment levels. Our study’s contribution is
the development of a model that can predict and visualize the
individual risk of cognitive decline regardless of fixed time and
set cognitive impairment levels. Furthermore, in the present study,
visualization was performed by utilizing the nomogram to assess
the predicted probability of a trajectory subgroup. As a result, our
model may be able to produce clinically useful results allowing for a
more clear interpretation. This model could facilitate identification
of individuals who are at risk of cognitive decline.

The strength of the present study was that we developed
predictive models based on two independent cohorts with
multimodal imaging markers and by using a sophisticated GMM
method. However, there are several issues that should be discussed.
First, we did not include longitudinal changes in HV and
Aβ in our model. Future studies are needed to determine
whether incorporating longitudinal changes in HV and Aβ might
increase prediction accuracy. In addition, since GMM estimates
all variances, convergence errors can occur (McNeish et al., 2021).
Nomograms assume that outcomes remain constant over time,
and can become less accurate over time for a variety of reasons,
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such as improvements in earlier detection and management
(Balachandran et al., 2015). Finally, other pathologies such as tau,
argyrophilic grain disease, Lewy body disease, transactive response
DNA-binding protein (TDP-43) pathology, hippocampal sclerosis,
atherosclerosis, and gross infarcts that are associated with global
cognitive decline were not considered (Wilson et al., 2020). Overall,
despite these limitations, our study is unique in that it focuses
on the cognitive trajectory of CU individuals and provides useful
predictive models to identify CU individuals who may show future
cognitive decline.

Conclusion

In conclusion, our study provides novel insights into different
cognitive trajectories among CU individuals. Since the predictive
model was able to classify CU individuals with respect to potential
future cognitive decline, this model could be employed in future
primary AD prevention trials.
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